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1. IntroductionApplication of artificial
Safe and efficient operation of a nuclear plant demandsneural networks for the
careful monitoring of the operating conditions. Plantwide
monitoring is useful in providing information about thedevelopment of a signal
condition of safety related components. Monitoring
involves analysis of the associated signals of a component,monitoring system
often the output of sensors and meters. Proper analysis of
these signals gives valuable information on the status of
the component.

Various noise analysis and system identification tech-
niques utilize signals in the form of time series data to
unscramble the useful information in the data (Sakuma
et al, 1995; Runkelet al, 1995). Simplifying assumptionsShahla Keyvan, Ajaya Durg
about the structure of a signal are made in order to reduce

and Jyothi Nagaraj the computation required to achieve accurate classification.
For applications where such assumptions are valid, these
techniques perform well. However, if the signals are not
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simply distributed or are highly correlated, these techniques
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become inadequate. The recent developments in learning
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algorithms of neural networks, on the other hand, have pro-
vided potential alternatives to traditional pattern recognition
techniques. The inherent complexity and nonlinearity in a
nuclear reactor, and the strong correlation existing among
reactor signals, require a new approach with far less restric-

Abstract: A prototype of a Signal Monitoring System tive assumptions about the structure of the input patterns
(SMS) utilizing artificial neural networks is developed in

than the traditional pattern recognition techniques. Neuralthis work. The prototype system is unique in: 1) its
networks offer a flexible, general-purpose approach toutilization of state-of-the-art technology in pattern
building the complex, highly nonlinear models that arerecognition such as the Adaptive Resonance Theory
required for a complex system such as a nuclear powerfamily of neural networks, and 2) the integration of
plant. Neural networks have the potential to provide sig-neural network results of pattern recognition and fault

identification databases. nificant advantages over alternative techniques for plant
The system is developed in an X-windows environment applications as diverse as modeling, control, diagnostics

that offers an excellent Graphical User Interface (GUI). and monitoring. The unique features of neural networks are
Motif software is used to build the GUI. The system is their ability to model arbitrarily complex multidimensional
user-friendly, menu-driven, and allows the user to select functions, their learning abilities, their fine grained parallel
signals and paradigms of interest. The system provides architecture, and their inherent robustness to noise. Once
the status or condition of the signals tested as either

developed, the models can be used for various purposesnormal or faulty. In the case of faulty status, SMS,
(Kumar & Guez, 1991; Glockleret al, 1995).through an integrated database, identifies the fault and

Noise analysis techniques provide a tool for pattern rec-indicates the progress of the fault relative to the normal
ognition and monitoring purposes in nuclear reactor sys-condition as well as relative to the previous tests.
tems (Trappet al, 1995; Poret al, 1995). One such methodNuclear reactor signals from an Experimental Breeder

Reactor are analyzed to closely represent actual reactor has been developed and applied to the signals from the
operational data. The signals are both measured signals Experimental Breeder Reactor (EBR-II) nuclear plant for
collected by a Data Acquisition System as well as degradation monitoring of the reactor pump shaft. It
simulated signals. requires prior identification of the dynamics associated with

the specific degradation of the reactor pump shaft (Keyvan,
1988). Neural networks, on the other hand, do not requireKeywords: pattern recognition, Signal Monitoring
a priori fault-related parameter identification. What makesSystem, artificial neural networks, ART2-A network,

Cascade Correlation Network neural computing different from traditional computing and
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expert systems is that unlike traditional expert systems data are generated representing a simulated rapid degra-
dation of the EBR-II pump shaft and are used to test thewhere knowledge is made explicit in the form of rules, neu-

ral networks generate their own rules by learning from feasibility and sensitivity of the SMS performance.
The signals utilized in SMS are divided in two groups,being shown examples. It is this characteristic of artificial

neural networks that makes them attractive for monitoring the actual measured signal and the simulated signals. The
measured signal is the pump power signal from pump num-purposes in nuclear reactor diagnostic applications

(Dzwinel & Pepyolyshev 1995). Neural networks have ber 1 of the EBR-II nuclear reactor which was collected on
29th January 1991. Figure 2 shows the plot of this signalbeen considered and evaluated for application in nuclear

plants for fault diagnostics; reactor control; sensor vali- data for a fifty-second time period. This measured
(collected) signal is used to simulate and generate faultydation; plant status monitoring; design of nuclear fuel cycle

reload; and vibration analysis (Guo & Uhrig, 1992; Bart- signals representing four levels of shaft degradation. Each
degradation level is created by slightly changing the degra-lett & Uhrig, 1992).

This paper demonstrates a prototype Signal Monitoring dation dynamic (eigenvalue) in the original collected pump
signal as shown in Table 1 (Keyvan, 1988). Figures 3System (SMS) which incorporates artificial neural networks

for pattern recognition and integrates the results with a data- through 6 show the plot of pump power data for cases 1
through 4 simulations respectively.base for fault identification. The SMS system is developed

in an X-windows environment that offers an excellent
Graphical User Interface (GUI). Motif software is used to

3. Neural network description
build the GUI. The system has the capability of integrating
between selected neural network paradigms, a fault identi- Neural networks are information processing systems mot-

ivated by the goals of reproducing the cognitive processesfication database, and a fault trend analysis module.
Figure 1 shows the schematic diagram of the system. The and organizational models of neurobiological systems. By

virtue of their computational structure, neural networks fea-following are the main features of the SMS:
ture attractive characteristics such as graceful degradation,O The system distinguishes between normal and faulty
robustness with fragmented and noisy data, parallel distri-sensor signals.
buted processing, generalization to patterns outside of theO In the case of a faulty signal, the system identifies the
training set, nonlinear modeling capabilities, and learning.fault and provides a measure of the degree of severity

A neural network is the most appropriate technique forof the identified problem (fault trend).
application in environments where robust, fault-tolerantO An option is provided to change the neural network
pattern recognition is necessary in a real-time mode and inconfiguration parameters and train the network again.
which incoming data may be distorted or noisy.O The system is sufficiently user-friendly and requires

The specific characteristics of a neural network dependminimal technical knowledge about neural networks.
on the paradigm utilized. The paradigm is determined by

As mentioned above, the system has many unique the architecture and the neurodynamics employed. The
characteristics and is sufficiently user-friendly that it can architecture defines the arrangement of the neurons (also
be used by neural networks experts as well as a user with called processing elements) and their interconnections (see
hardly any knowledge about neural networks. In addition, Fig. 7). The neurodynamics specifies how the inputs to the
no data analysis or prior knowledge is required on the part neurons are going to be combined together (i.e. short term
of the user. This makes it a very useful computer-based aid memory), what type of functions or relationships are going
to a nuclear reactor operator for monitoring purpose. to be used to develop the output, and how the adaptive

coefficients (i.e. long term memory) are going to be
modified.2. Signal description

The learning mechanism which handles modifications to
The pump power signals from the EBR-II nuclear reactor the adaptive coefficients can be classified under supervised,
are used as input to the SMS. Also, four simulated signal unsupervised, and reinforcement learning. Supervised

learning takes place when the network is trained using pairs
of inputs and desired outputs. A training set is used to train
the neural network when using a supervised learning algor-
ithm such as Backpropagation. The model is then validated
using new data or data that was not part of the training set.
In unsupervised learning, the network is able to self-
organize the categories. Reinforcement learning adds feed-
back to unsupervised learning to evaluate the pattern classi-
fication process.

The spectrum of different paradigms is quite extensive.Figure 1: Schematic of the Signal Monitoring System
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Figure 2: Plot of Pump #1 Measured Power Signal (collected on 29th January 1991)

Table 1: Simulated dynamics representing four degra- tages of ART 1 architecture (Carpenter, Grossberg & Rosen
1991a). The class ARTMAP (“predictive” ART) is builtdation levels
upon the basic ART designs, while incorporating super-
vision in the learning process (Carpenter, Grossberg &SIMULATED CASE EIGENVALUE
Reynolds, 1991). Fuzzy ARTMAP has the capability of
handling nonstationary stochastic signals and supervisedperiodicity = 12 0.866± 0.50 i

Case 1 (degradation level 1) 0.79± 0.43 i learning (Carpenter, Grossberg, Markuzon, Reynolds &
Rosen, 1992). ART 2-A (“algorithmic” ART) is a specialCase 2 (degradation level 2) 0.82± 0.45 i

Case 3 (degradation level 3) 0.74± 0.48 i case of ART 2 which emphasizes the intermediate and fast
learning rates, hence accelerating the learning process byCase 4 (degradation level 4) 0.86± 0.50 i
about three orders of magnitude (Carpenter, Grossberg &
Rosen, 1991b).

For example, the network architectures range from simplis-
tic one-layer to the hierarchical networks. In addition, there

3.1 Neural networks installed in SMS
are a large number of algorithms that can be used to modify
the adaptive coefficients. The various paradigms have their ART 2 and ART 2-A of the ART family of neural networks

and Cascade Correlation network are currently installed inlimitations and strengths, hence one must identify the suit-
able application areas to which they lend themselves. the SMS menu as appropriate networks to choose from.

These neural networks are selected based on a comprehen-Adaptive Resonance Theory (ART) represents a family
of neural networks that organize and categorize arbitrary sive examination and evaluation of various artificial neural

networks for application to the nuclear reactor signals. Thesequences of input patterns in real-time. A class of these
networks, called ART 1, is unsupervised and can be used evaluation included ART 2, ART 2-A, Fuzzy Adaptive

Resonance Theory (Fuzzy ART), and Fuzzy ARTMAPonly for binary patterns. ART 2, which is also an unsuper-
vised class, responds to both binary and analog patterns paradigms of the ART family, as well as, Backpropagation,

Cascade Correlation, and Restricted Coulomb Energy(Carpenter & Grossberg, 1987, 1988). The class ART 3
features an advanced reinforcement feedback mechanism (RCE) networks. Several simulators were built. The relative

speed of all networks was also examined (Keyvan, Durg &which can alter the classification sensitivity (Carpenter &
Grossberg 1990). The class “fuzzy” ART is similar in archi- Rabelo 1993a, 1993b; Keyvan, Rabelo & Malkani, 1992;

Keyvan & Rabelo, 1992; Keyvan & Durg, 1992; Keyvan &tecture to ART 1; however, fuzzy operators are added in
order to handle analog patterns without losing the advan- Rabelo, 1991).
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Figure 3: Simulated Degradation Level 1

Figure 4: Simulated Degradation Level 2

3.2 ART 2/ART 2-A (Algorithmic ART) ART 2-A has three fields: F0, F1, and F2 (Fig. 8). The
output of the F1 field which is also the output of the F0 field

The ART 2 network architecture utilized in SMS is shown is the vector I defined by:
in Fig. 7.

I = normal (f(normal(I0)))ART 2-A is a special case of ART 2 designed for large-
scale pattern recognition tasks. Its algorithmic-type nature where I0 is the input vector of dimensionality M, and nor-
lends itself to rapid prototyping in hardware and software. mal is an operator defined by:
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Figure 5: Simulated Degradation Level 3

Figure 6: Simulated Degradation Level 4

normal(x) = x/ixi learning (which may need more trials to achieve stable
categories) as follows:

and f ( ) is a piecewise linear function:

zj =H1normal (b normal (c)+(1−b) zJ)
if J is uncommitted
if J is committedf(x) = H0 if 0 # x , u

x if x $ u, 0 , u # (M)−1/2

where,
The Long Term memory (LTM) vector in ART 2-A is
scaled, and it could be interpreted as the LTM vector of

ci = HI i

0
if zJi . u

otherwiseART 2 divided by
1

(1 − d)
(Fig. 7). As in ART 2, the F2

node ART 2-A makes a choice if the Jth node becomes
maximally active. In addition, the F2 Short Term Memory and 0# ß # 1 (e.g. ß= 1 for fast learning).

Due to the utilization of algebraic equations and simplis-(STM) activation represents the degree of match of the
vector I and the scaled Long Term Memory (LTM) vector. tic arithmetic procedures which involve less iterations,

ART 2-A is typically three orders of magnitude faster thanLTM adjustments are performed in a single iteration and
are reduced to algebraic equations for fast and intermediate ART 2.
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Figure 7: ART 2 Network Architecture ( from Carpenter & Grossberg, 1987)
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Figure 8: ART 2-A Network Architecture

3.3 Cascade Correlation paradigm unit moves quickly and directly to assume some useful role,
we see a complex dance among all the units that takes a

Cascade Correlation, a supervised learning algorithm, is an
long time to settle down.

improvement over the popular Backpropagation algorithm.
The Cascade Correlation algorithm overcomes this prob-

The main disadvantage of the Backpropagation algorithm
lem by allowing only one hidden unit to evolve at any given

is that it learns slowly. One of the reasons for this slow
time. This allows the network to learn faster. The network

learning is the moving target problem (Fahlman & Lebiere,
architecture is termed as cascade architecture, since hidden

1990). Briefly stated, the problem is that each unit in the
units are added (cascaded) to the network one at a time

interior of the network is trying to evolve into a feature
until the network yields the desired performance. For each

detector that will contribute in some way to the network’s
new hidden unit, an attempt is made to maximize the mag-overall performance, but its task is greatly complicated by
nitude of the correlation between the output of the new unit

the fact that all the other units are also changing at the same
and the residual error signal. Hence the paradigm is termed

time. The error signal propagated back to a unit defines the
Cascade Correlation.

problem that the unit is trying to solve, but this problem
The cascade architecture begins with some input and one

changes constantly. Instead of a situation in which each
or more output units (as required by the problem), but with
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no hidden units. Hidden units are added to the network one window. A “Help” facility is also provided at this point
which gives basic information about the parameters.by one. There is a connection from every input unit to every

output and hidden unit, and a connection from every hidden File: This module keeps track of all the input data files
to be applied to the neural network (“Data” submodule) andunit to every output unit. The hidden units’ input weights

are frozen at the time the unit is added to the network, and the files for network parameters (“parameters” submodule).
The required input signal data file to be applied to the neu-only the output connections are trained repeatedly. At the

hidden and output units, the incoming signals are summed ral network can be chosen from the “Data” submenu under
the file menu. The desired data file is chosen to run theand the sum is passed through an activation function to

produce the output signals at the hidden and output units neural network for fault identification. The default file setup
is that containing normal signal data.respectively. Figure 9 shows the network architecture for

Cascade Correlation. System Status:This module provides the actual diag-
nostic information about the nuclear reactor components.
As mentioned earlier, SMS was built to monitor the signals

4. Signal Monitoring System description
in the pump shaft of a nuclear reactor and identify faults
therein. A neural network memory and fault identificationSMS consists of the following main modules:
database were established to identify the simulated degra-O Network
dation in the pump shaft.O Parameters

The diagnostic information is obtained by clicking onO File
the “System Status” button. Once the “System Status” isO System Status
selected, the selected signal data from the “Data” submenu

Network: The network module provides access to vari- is applied as input to the selected neural network. The neu-
ous neural network paradigms that can be used for pattern ral network runs in the background and classifies the given
identification. Both supervised and unsupervised paradigms input signal using the already established memory into one
are considered. The following paradigms are currently of these categories : normal, case 1, case 2, case 3, case 4,
installed in the system : or unknown signal. If the signal is identified as normal, a

status report is displayed as shown in Figure 10; otherwise,
(a) Unsupervised networks: a faulty status report is displayed as shown in Figure 11.

• ART 2 In case of the faulty status report, the normal signal is also
• ART 2-A shown for comparison. A description of the fault can be

(b) Supervised networks : obtained by selecting the “Describe Fault” button shown in
• Cascade Correlation Figure 11. The fault description corresponding to the cur-

rent faulty signal is gathered from the existing fault data
Parameters: Network parameters are needed to con- base and displayed at this point (Fig. 12). The faults are

figure the neural network. This module allows modification
of the network parameters. When a network is selected, the
default values of the parameters are loaded. These values
can be modified and permanently saved to a file for future
use if desired. The changes to the parameter values can be
accomplished by direct modification, which can be adopted
when the user has some prior understanding of the network
parameters. The network parameters can be modified by
editing the default values displayed in the “Parameters”

Figure 9: Cascade Correlation network architecture Figure 10: Output from SMS for a Normal Signal
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Figure 11: Output from SMS for a Faulty Signal

Figure 13: Fault Trend for Normal and Faulty Signal

Figure 12: Description of the Faulty Signal
Figure 14: The Output of SMS for an Unidentified

Faulty Signaldescribed as “Degradation level 1”, “Degradation level 2”,
etc. The “Fault Trend” button (Fig. 12) is selected to view
a plot showing the relative degradations. The fault trend
indicates a measure of degradation level. It also maintains
a history of degradation of the faults by putting the current (Fig. 13). When a new fault different from the ones cur-

rently registered in the database is encountered, the SMStime stamp (minutes: seconds) below the trend index, thus
capturing the progress of the faults over a period of time output will be “unidentified fault”, as shown in Figure 14.
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